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ABSTRACT5

The promise of gyrochronology is that given a star’s rotation period and mass, its age can be inferred. The6

reality of gyrochronology is complicated by effects other than ordinary magnetized braking that alter stellar7

rotation periods. In this work, we present an interpolation-based gyrochronology framework that reproduces the8

time- and mass-dependent spin-down rates implied by the latest open cluster data, while also matching the rate at9

which the dispersion in initial stellar rotation periods decreases as stars age. We validate our technique for stars10

with temperatures of 3800–6200 K and ages of 0.08–2.6 gigayears (Gyr), and use it to reexamine the empirical11

limits of gyrochronology. In line with previous work, we find that the uncertainty floor varies strongly with both12

stellar mass and age. For Sun-like stars (≈5800 K), the statistical age uncertainties improve monotonically from13

±38% at 0.2 Gyr to ±12% at 2 Gyr, and are caused by the empirical scatter of the cluster rotation sequences14

combined with the rate of stellar spin-down. For low-mass K-dwarfs (≈4200 K), the posteriors are highly15

asymmetric due to stalled spin-down, and±1σ age uncertainties vary non-monotonically between 10% and 50%16

over the first few gigayears. High-mass K-dwarfs (5000 K) older than≈1.5 Gyr yield the most precise ages, with17

limiting uncertainties currently set by possible changes in the spin-down rate (12% systematic), the calibration18

of the absolute age scale (8% systematic), and the width of the slow sequence (4% statistical). An open-source19

implementation, gyro-interp, is available online at gitfront.io/r/lgbouma/Un4sE3isR9ma/gyro-interp/.20

Keywords: Stellar ages (1581), Stellar rotation (1629), Field stars (2103); Bayesian statistics (1900)21

1. INTRODUCTION22

The ages of stars are fundamental for our understanding23

of planetary, stellar, and galactic evolution. Unfortunately,24

stellar ages are not directly measurable, and so the astronom-25

ical age scale is tied to a mix of semifundamental, model-26

dependent, and empirical techniques (Soderblom 2010). One27

empirical age-dating method is to use a star’s spin-down as a28

clock (Kawaler 1989; Barnes 2003). This gyrochronal tech-29

nique leverages direct measurements of stellar surface rota-30

tion periods, typically inferred from photometric modulation31

induced by spots or faculae. The clock’s mechanism is mag-32

netized braking that drives rotation periods to increase as the33

square root of time (Weber & Davis 1967; Skumanich 1972).34

While data from open clusters have shown the limitations of35

this approximation, the idea has been useful, and it has set36

the foundation for many empirical studies of how rotation37

period, age, and activity are interrelated (e.g., Noyes et al.38

1984; Barnes 2007; Mamajek & Hillenbrand 2008; Barnes39

2010; Angus et al. 2015, 2019; Spada & Lanzafame 2020).40
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This work aims to clarify the accuracy and precision of gy-41

rochronology for stars on the main-sequence. Our main im-42

petus for writing was the realization that available models did43

not match observations of open cluster rotation periods (e.g.,44

Curtis et al. 2019a, 2020). The disagreement was most se-45

vere for K-dwarfs, which have stellar rotation rates that stall46

from 0.7 to 1.4 Gyr (Agüeros et al. 2018; Curtis et al. 2020).47

While a likely physical explanation centers on the timescale48

for angular momentum exchange between the radiative core49

and convective envelope (Spada & Lanzafame 2020), accu-50

racy is paramount because any bias in the rotation models51

propagates into bias on the inferred ages.52

Regarding precision, previous analytic studies have re-53

ported age uncertainties for field FGK dwarfs of 13–20%54

(Barnes 2007), and have noted that these uncertainties in-55

crease for young stars due to larger empirical scatter in their56

rotation sequences (Barnes 2010). The question of how this57

empirical scatter, often described as “fast” and “slow” se-58

quences in the rotation–color plane, limits gyrochronal pre-59

cision was analyzed in detail by Epstein & Pinsonneault60

(2014). For stars older than 0.5 Gyr, their approach was to61

consider the range of possible ages that a star with fixed ro-62

tation period and mass might have, and to convert this range63

into an age uncertainty. Our work formalizes this idea. If64

an astronomer wishes to infer the age of an individual field65
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star, they do not know whether their star is on the fast or slow66

sequence. They simply know the star’s rotation period and67

mass, and so they must marginalize over the population-level68

scatter in order to determine a posterior probability distribu-69

tion for the age. Ultimately, Epstein & Pinsonneault (2014)70

emphasized that this type of approach needed empirical guid-71

ance in order to mitigate the systematic uncertainties in the72

spin-down models; such guidance now exists.73

Using the latest available open cluster data (Section 2),74

we calibrate a new gyrochronal model that interpolates75

between the open cluster rotation sequences (Section 3).76

Given a star’s rotation period, effective temperature, and77

their uncertainties, our framework returns the implied gy-78

rochronal age posterior, which is often asymmetric (Sec-79

tion 4). We validate our model against both training80

and test data, and focus our discussion and conclusions81

(Section 5) on the empirical limits of gyrochronal age-82

dating. An open-source implementation is available online83

at gitfront.io/r/lgbouma/Un4sE3isR9ma/gyro-interp/.84

2. BENCHMARK CLUSTERS85

2.1. Rotation Data86

To calibrate our model, we first collected rotation period87

data from open clusters that have been surveyed using pre-88

cise space and ground-based photometers. The clusters that89

we examined are listed in Table 1, along with their ages and90

V -band extinctions. These clusters were selected based on91

the completeness of available rotation period catalogs for F,92

G, K, and early M dwarfs. The Pleiades, Blanco-1, and Psc-93

Eri were concatenated as a 120 megayear (Myr) sequence,94

since their rotation–temperature sequences were visually in-95

distinguishable. The upper age anchor, Ruprecht-147, was96

similarly combined with NGC-6819 to make a 2.6 Gyr se-97

quence. While older populations have been studied (Barnes98

et al. 2016; Dungee et al. 2022), their rotation–color se-99

quences do not yet have sufficient coverage to be usable in100

our core analysis. Our lower anchor, α Per, was selected101

based on its converged rotation–temperature sequence above102

0.8 M� (Boyle & Bouma 2022). Our model is therefore only103

constrained between 80 Myr and 2.6 Gyr.104

2.2. Effective Temperatures105

For our effective temperature scale, we adopted the Cur-106

tis et al. (2020) conversion from dereddened Gaia Data Re-107

lease 2 (DR2) GBP − GRP colors to effective temperatures.108

This calibration was determined using FGK stars with high-109

resolution spectra (Brewer et al. 2016), nearby stars with in-110

terferometric radii (Boyajian et al. 2012), and M-dwarfs with111

optical and near-infrared spectroscopy (Mann et al. 2015).112

The typical precision in temperature from this relationship is113

50 K for stars near the zero-age main-sequence (ZAMS). We114

explicitly used Gaia DR2 mean photometry to calculate the115

temperatures, since the intrinsic difference between the Gaia116

DR2 and DR3 colors is important at this scale. For all other117

Gaia-based quantities in our analysis, we used the DR3 val-118

ues. For the extinction corrections, we adopted the reddening119

values listed in Table 1. We dereddened the observed Gaia120

DR2 GBP −GRP colors by assuming E(GBP −GRP) = 0.415AV,121

similar to Curtis et al. (2020). For the stars of interest in122

this work (0.5–1.2 M�; 3800–6200 K), the resulting temper-123

atures serve as a plausible proxy for stellar mass; the MIST124

grids show that they change by .2.5% between 80 Myr and125

2.6 Gyr (Choi et al. 2016).126

2.3. Binarity Filters127

Binarity can affect the locations of stars in rotation–color128

space by observationally biasing photometric color measure-129

ments, and also by physically altering stellar rotation rates130

through e.g., tidal spin-up or early disk dispersal. To remove131

possible binaries from our calibration sample, we applied the132

following filters to each cluster dataset.133

Photometric binarity—We plotted the Gaia DR3 color–134

absolute magnitude diagrams in MG vs. GBP − GRP, G − GRP,135

and GBP − G, and manually drew loci to remove over or136

under-luminous stars in each diagram.137

RUWE—We examined diagrams of the Gaia DR3 renor-138

malized unit weight error (RUWE) as a function of bright-139

ness, and based on these diagrams required RUWE > 1.2.140

Outliers in this space can be caused by astrometric binarity,141

or by marginally resolved point-sources fitted with a single-142

source PSF model by the Gaia pipeline.143

Radial velocity scatter—We examined diagrams of Gaia144

DR3 “radial velocity error” as a function of G-mag. Since145

this quantity is the standard deviation of the Gaia RV time-146

series, outliers can imply single-lined spectroscopic binarity.147

We manually removed such stars.148

Crowding—We queried Gaia DR3 to determine how many149

stars were within 1 instrument pixel distance of each target150

star (e.g., 4′′/px for Kepler). Any stars within ≈20× the151

brightness of the target star (∆G < 3.25) were noted, and152

the target stars were removed from further consideration. Al-153

though not all visual companions are binaries, their presence154

can complicate rotation period measurements, particularly in155

cluster environments.156

Gaia DR3 Non-Single-Stars—Gaia DR3 includes a col-157

umn to flag known or suspected eclipsing, astrometric, and158

spectroscopic binaries. We directly merged against this col-159

umn to remove such sources.160

Final calibration sample—The combination of the filters161

described above yields the set of stars that show no evidence162

for binarity or crowding. However, some of the rotation pe-163

riod analyses in Table 1 include additional relevant quality164

flags. For instance, light curves showing multiple photomet-165

ric periods can indicate unresolved binarity. We used all rel-166

evant filters available from the original authors if they were167

designed to select single stars with reliable rotation periods.168

The final combination of these filters with our own flag for169

possible binarity yields our sample of benchmark rotators.170

2.4. The Single-Star Calibration Sequence171

Figure 1 is the result of the data curation process described172

in Sections 2.1 through 2.3. While we have omitted the pos-173

sible binaries described in Section 2.3 for visual clarity, they174

are included in the Data behind the Figure. The gray lines are175

https://gitfront.io/r/lgbouma/Un4sE3isR9ma/gyro-interp/
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Table 1. Reference clusters and parameters used for the core gyrochrone calibration.

Name Reference Age Age Provenance AV AV Provenance Instrument Prot Provenance Recovered Age?

α Per 79.0+1.5
−2.3 Myr (1) 0.28 (2†) TESS (2) 56+29

−38 Myr

Pleiades 127.4+6.3
−10.0 Myr (1) 0.12 (3) K2 (4) 122+6

−4 Myr

Blanco-1 137.1+7.0
−33.0 Myr (1) 0.031 (5) NGTS (5) 133+10

−9 Myr

Psc-Eri stream Pleiades-coeval (6) 0 (6) TESS (6) 137+6
−7 Myr

NGC-3532 300±50 Myr (7) 0.034 (8) Y4KCam (8) 278+28
−29 Myr

Group-X 300±60 Myr (9) 0.016 (9) TESS (9) 307+8
−9 Myr

Praesepe 670±67 Myr (10) 0.035 (3) K2 (11) 688+14
−12 Myr

NGC-6811 1040±70 Myr (12) 0.15 (3) K2 (12) 987+11
−14 Myr

NGC-6819 2.5±0.2 Gyr (13) 0.44 (3) Kepler (14) 2515+23
−22 Myr

Ruprecht-147 2.7±0.2 Gyr (15) 0.30 (3) K2 (3) 2647+23
−22 Myr

NOTE— References: (1) Galindo-Guil et al. (2022); (2) Boyle & Bouma (2022); (3) Curtis et al. (2020); (4) Rebull et al. (2016); (5) Gillen
et al. (2020); (6) Curtis et al. (2019b); (7) Fritzewski et al. (2019); (8) Fritzewski et al. (2021); (9) Messina et al. (2022); (10) Douglas et al.
(2019); (11) Rampalli et al. (2021); (12) Curtis et al. (2019a); (13) Jeffries et al. (2013); (14) Meibom et al. (2015); (15) Torres et al. (2020).
†The adopted α Per reddening varies across the cluster, per Boyle & Bouma (2022); this table reports the median value. ?See Section 4.1.

derived from polynomial fits that we describe in the follow-176

ing section. Comparing against the rotation–color sequences177

in say Godoy-Rivera et al. (2021), it is impressive how sparse178

the fast sequence is for hot stars. In the 120 Myr clusters,179

both Blanco-1 and Psc-Eri have no apparently single fast ro-180

tators hotter than 5000 K. The Pleiades has four. The rapid181

rotator sequence is similarly sparse at 300 Myr. The large bi-182

nary fraction of fast-sequence stars warrants future analysis,183

to understand whether the binary separations and mass ratios184

for these systems are typical of the field binary population.185

3. A GYROCHRONOLOGY MODEL186

Here we present a model that aims to accurately describe187

the evolving rotation period distributions of F7–M0 dwarfs188

with ages of 0.08–2.6 Gyr. The goal is to then use this model189

to assess the precision with which rotation periods can be190

used to infer ages. To perform this analysis, our model needs191

to account for the trends visible in Figure 1: stellar spin-192

down rates vary with both mass and age; stellar spin-down193

can stall; and higher-mass stars younger than Praesepe tend194

to converge to the slow sequence before lower-mass stars.195

Our approach will ultimately use interpolation, based on the196

logic that there are certain regions of Figure 1 in which a hy-197

pothetical star located between two cluster sequences would198

need to have an age intermediate to those two clusters. A few199

formalities are needed to make this idea rigorous.200

3.1. Formalism201

For a given star, we have an observed rotation period P̃rot
and stellar effective temperature T̃eff with measurement un-
certainties σP̃rot

and σT̃eff
. Given these data, we want to find

the posterior probability distribution for the age t of the star.
We write the corresponding probability density as ft|P̃rot,T̃eff,s,
where s = (σP̃rot

,σT̃eff
) is shorthand for the vector of observa-

tional uncertainties. We find ft|P̃rot,T̃eff,s by marginalizing over
the joint probability density ft,Prot,Teff|P̃rot,T̃eff,s, where Prot is the

true rotation period of the star and Teff is its true effective
temperature. Mathematically, this means

ft|P̃rot,T̃eff,s =
∫ ∫

fProt,Teff,t|P̃rot,T̃eff,s dProt dTeff. (1)

By Bayes’ rule, the integrand can be written as

fProt,Teff,t|P̃rot,T̃eff,s ∝ fP̃rot,T̃eff|Prot,Teff,t,s · fProt,Teff,t (2)

where the first term is the likelihood and the latter is the prior.202

3.2. Likelihood203

For the likelihood, we assume that the observed rotation
period and temperature have Gaussian uncertainties and are
measured independently. In this case,

fP̃rot,T̃eff|Prot,Teff,t,s = fP̃rot|Prot,Teff,t,s · fT̃eff|Prot,Teff,t,s (3)

and the latter distributions for the measured temperature and
rotation period are specified by

T̃eff ∼N (Teff,σ
2
T̃eff

) and P̃rot ∼N (Prot,σ
2
P̃rot

), (4)

whereN denotes the normal distribution. In other words, our204

likelihood is a product of two normal distributions.205

3.3. Prior206

The prior is more interesting. By the chain rule,

fProt,Teff,t = fProt|Teff,t · fTeff · ft , (5)

where we have assumed fTeff|t = fTeff because in our model,
changes in stellar temperature through time are ignored. We
assume that age and temperature are uniformly distributed,

t ∼ U(tmin, tmax) and Teff ∼ U(T min
eff ,T

max
eff ), (6)
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Figure 1. Open cluster data and models. The top panel shows the data that we aim to model, and the bottom panel focuses on the first
gigayear. Gray lines in the top panel show the mean model for the rotation period distribution (“gyrochrones”), and are uniformly spaced
at integer multiples of 100 Myr. They are evaluated using a seventh-order polynomial for each cluster (colored lines, bottom panel), and
interpolated piecewise between those reference loci. The model is defined over temperatures of 3800–6200 K, and ages of 0.08–2.6 Gyr. Data
behind the Figure are available as a machine-readable table.

where (tmin, tmax), (T min
eff ,T

max
eff ) are the limiting ages and tem-207

peratures for our model. We adopt limiting ages of 0 to208

2.6 Gyr, and limiting temperatures of 3800 to 6200 K. The209

upper limit on age is set by the oldest clusters in our dataset210

(Table 1), and the temperature limits are set to include the211

regions in which stellar rotation is most correlated with age.212

While one might imagine a prior on temperature informed by213

the stellar initial mass function, or a prior on age informed by214

the star formation history of the Milky Way, the star forma-215

tion rate has been approximately constant over the past 10216

billion years (e.g., Nordström et al. 2004) and incorporating217

a stellar mass function would systematically bias already ac-218

curate measurements towards lower temperatures. We do not219

consider such additions.220

The remaining term in Equation 5, fProt|Teff,t , is the core of221

our model. We propose a functional form for fProt|t,Teff that re-222
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lies on two components. The first component, µslow(t,Teff), is223

the rotation period of the star if it were exactly on the slow se-224

quence — this is colloquially the “mean” gyrochronal model225

for a star’s rotation period prescribed at any age and temper-226

ature. The second component is the residual to that mean227

model — the probability distribution for how far the star’s228

rotation period is from the slow sequence at any given age229

and temperature. This model parametrization is motivated230

by how the observed abundance of rapid rotators changes as231

a function of both stellar temperature and age.232

The Mean Model —To parametrize the slow sequence, we fit-233

ted rotation periods in each reference cluster with an N th or-234

der polynomial over 3800–6200 K. We manually selected the235

slow sequence stars to perform this fit using the data behind236

Figure 1. We investigated the choice of N between 2 and 8,237

and settled on N = 7 as a compromise between overfitting and238

accurately capturing the structure of the data.239

To model the evolution of the slow sequence, we consid-240

ered a few possible approaches, all based on interpolating241

between the fitted polynomials (see Appendix A). We ulti-242

mately chose at any given temperature to fit 1-D monotonic243

cubic splines in rotation period as a function of age. This244

guarantees a smooth increase in the slow sequence envelope245

while also fitting all available data. Systematic uncertainties246

associated with this choice are described in Section 5.2. This247

procedure yielded the gray lines in Figure 1, which are the248

gyrochrones from this model at integer multiples of 100 Myr.249

At times below 80 Myr, we do not extrapolate; we instead250

let the “mean model” µslow(t,Teff) equal the lowest reference251

polynomial rotation period values as set by α Per. This yields252

posterior distributions that are uniformly distributed at young253

ages. Possible options regarding extrapolation for older stars254

are discussed in Appendix A.255

The Residual —The top row of Figure 2 shows the residuals256

for the calibration clusters with t ≤ 670 Myr, relative to the257

polynomial model. Our ansatz is to model this distribution258

as a sum of a Gaussian and a uniform distribution, with each259

distribution smoothed around a time-dependent transition lo-260

cation in effective temperature. This procedure ignores the261

few positive outliers.262

Mathematically, this means that the rotation period, given
the age and temperature, is drawn from

Prot ∼ a0NP(µslow,σ
2)⊗LT (T cut

eff (t),k0) (7)

+ a1g(t) UP(0,µslow)⊗
(
1 − LT (T cut

eff (t),k1)
)
,

where N is a normal distribution, U is a uniform distribu-263

tion, a0 and a1 are scaling constants, and L(`,k) is the lo-264

gistic function specified by a location ` and smoothing scale265

k. Visual examples are given in the middle row of Figure 2.266

The subscripts, for instance NP, indicate the dimension over267

which the distribution is defined — period (P) or effective268

temperature (T ), and ⊗ denotes an outer product. We have269

also hidden the dependence of µslow on time and temperature270

for simplicity of notation.271

The first term in Equation 7 parametrizes the slow se-272

quence using a Gaussian centered on µslow(t,Teff), with a uni-273

versal width σ = 0.51days set by the observations of clusters274

at least as old as the Pleiades. The location parameter of the275

logistic function, T cut
eff (t), is a function that monotonically de-276

creases to account for the age-dependent transition between277

the slow and fast sequence (Figure 2). While other choices278

for the functional form are possible, we assumed that at any279

given time this function is defined as the temperature of the280

lowest-mass star that has just arrived at the main-sequence,281

since this is the time at which the star’s surface rotation rate282

is no longer affected by gravitational contraction. We evalu-283

ated this quantity through linear interpolation over the solar-284

metallicity MIST grids (Choi et al. 2016). At 80, 120, and285

300 Myr this yielded T cut
eff values of 4620, 4150, and 3440 K,286

respectively.287

3.4. Free Parameters288

The free parameters in the model are as follows. In the289

residual term, there are the amplitudes (a0,a1), the two scal-290

ing parameters (k0,k1), and the slope of the linear amplitude291

decrease g(t) for the “fast sequence” term through time. This292

would yield five free parameters, but a0 and a1 are degen-293

erate, so there are really only four degrees of freedom. We294

fixed the other terms in the model that could in principle be295

allowed to vary. These included the polynomial terms in the296

slow sequence model µslow, the scatter around the slow se-297

quence σ, and the function specifying the decrease of the ef-298

fective temperature cutoff through time T cut
eff (t).299

3.5. Fitting the Model300

To compare the model (Equations 1 through 7) to the data,301

we performed the following procedure. For the reference302

clusters at 120 Myr (N? = 196), 300 Myr (N? = 133), and303

670 Myr (N? = 100), we divided the data into seven bins,304

starting at 3800 K, with uniform bin widths of 350 K. Includ-305

ing α Per (80 Myr; N? = 65) as an optional fourth dataset306

yielded similar results, so we omitted it for simplicity. In307

each bin, we counted the number of stars on the slow se-308

quence, and the number of stars on the fast sequence. We309

considered a star to be “slow” if it is within two days of the310

mean slow sequence model, and “fast” if it is more than two311

days faster than the same model. This cutoff was determined312

based on the uniform scatter of σ ≈ 0.51days seen around313

the slow-sequence for clusters with t ≥ 120 Myr. We then314

use the resulting counts to define a “fast fraction,” F , the ra-315

tio of fast rotating stars to the total number of stars observed316

in any given temperature bin.317

The bottom row of Figure 2 shows this fast fraction as a318

function of temperature. We calculated the same summary319

statistic for our model through numerical integration. This320

yields a χ2 metric, χ2 =
∑

i(Fi − Fi,model)2/σ2
i , where the sum321

i is over the three reference sets of open clusters. For the322

σi, the default Poissonian uncertainties would disfavor the323

small number of stars from 4500–6200 K in Praesepe that324

are all on the slow sequence. Since auxiliary clusters with325

similar ages such as the Hyades (Douglas et al. 2019) and326
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Figure 2. Data, model, and goodness-of-fit. Top: Cluster rotation periods, minus the corresponding slow-sequence gyrochrone at each
cluster’s age. The lower gray envelope corresponds to a zero-day rotation period. Middle: Model for rotation period as a function of age and
temperature (Equation 7), fitted to the 120 Myr, 300 Myr, and 670 Myr clusters. Bottom: Fraction of stars in 350 K bins that rotate “fast”, as
a function of temperature. “Fast” and “slow” stars are squares and circles on the top panel; “very slow” outliers are the crosses. “Slow” stars
show a uniform scatter of σ≈0.51 days around the mean model at t ≥ 120 Myr. The assumed uncertainties for Praesepe are smaller than the
markers (see Section 3.5).

NGC-6811 (Curtis et al. 2019a) also have fully converged327

slow sequences, we adopted a prescription for the σi in which328

we set them to be equal to one another at 120 and 300 Myr329

and ten times smaller at 670 Myr. This forces the model to330

converge to the fast sequence by the age of Praesepe. The331

normalization of the uncertainties was then allowed to float332

in order to yield a reduced χ2 of unity.333

We fitted the model by sampling the posterior probabil-334

ity using emcee (Foreman-Mackey et al. 2013). We sam-335

pled over five parameters: a1/a0, lnk0, lnk1, the slope of336

g(t), and the multiplicative uncertainty normalization. The337

function g(t) was set to unity below 120 Myr, and to de-338

crease linearly to zero while intersecting 300 Myr at a par-339

ticular value, yg. The latter value was the free parameter340

used to fit the slope of the line. The maximum-likelihood341

values yielded by this exercise were {a1/a0, lnk0, lnk1,yg} =342

{8.26, −4.88, −6.24,0.67}. To evaluate the posterior, we as-343

sumed a prior on each parameter that was uniformly dis-344

tributed over a wide boundary. We checked convergence345

by running the chains out to a factor of 300 times longer346

than the autocorrelation time. The resulting median pa-347

rameters and their 1σ intervals were {a1/a0, lnk0, lnk1,yg} =348

{9.29+3.62
−2.41 , −4.27+2.56

−1.52 , −6.15+0.23
−0.25 ,0.63+0.03

−0.07 }. The lower row of349

Figure 2 shows the best-fit model plotted over 64 samples.350

Qualitatively, the model fits the fast fraction’s behavior well351

in both temperature and time.352

3.6. Evaluating the Posterior353

For any given star, we numerically evaluate Equation 1354

using the composite trapezoidal rule. For each age in a re-355

quested grid, we define linear grids in the dimensions of tem-356

perature and y ≡ P −µslow, each with side length Ngrid. The357

integration is then performed over dTeff and dy at each speci-358

fied age. Runtime scales asO(Ngrid), and takes a few seconds359

on a typical laptop. This runtime estimate however assumes360

that the four hyperparameters, a1/a0, lnk0, lnk1, and yg, are361

fixed. Since these parameters are unknown, the most rig-362

orous approach for age inference for any one star requires363

sampling from the posterior probability distribution for the364

hyperparameters. Each sample then yields its own posterior365

for the age from Equation 1, from which sub-samples can be366

drawn. All the sub-samples can then be combined to numer-367

ically yield an average posterior.368



GYROCHRONOLOGY BY INTERPOLATION 7

The top panels of Figure 3 show the results of this sam-369

pling procedure in dotted lines, plotted underneath an alter-370

native: simply adopting the best-fit model (solid lines). The371

results are similar, although there are differences for most372

rapidly rotating stars. While the sampling procedure is rela-373

tively simple to parallelize, it is a factor of ≈103 times more374

expensive than using the best-fit model; for most practition-375

ers, the rigor is unlikely to justify the runtime cost. As we376

will discuss in Section 5.2, this model has other systematic377

uncertainties that are more important.378

4. RESULTS379

4.1. Model Validation380

As a validation test, we calculated gyrochronal ages for all381

3800–6200 K stars in Figure 1. We then multiplied their pos-382

terior probability distributions to infer the joint age distribu-383

tion for each cluster. A few stars were omitted1 because they384

were extreme outliers that would otherwise shift the compos-385

ite posterior. The results for the remaining stars are shown in386

the “recovered age” column of Table 1. The fitted ages agree387

with the literature ages for every cluster to within 2σ. The388

constraints are also precise (. 5% precision), except for the389

cases of α Per and Group-X. For α Per, this is expected be-390

cause rotation periods do not yield precise age constraints391

at 80 Myr. For Group-X, the large uncertainties relative to392

NGC-3532 are likely caused by the smaller number of stars,393

particularly K-dwarfs (cf. Fritzewski et al. 2021 and Messina394

et al. 2022).395

As an additional test, we repeated the exercise, but us-396

ing data for two open clusters outside of our training data:397

M34 (≈240 Myr; Meibom et al. 2011) and M37 (≈500 Myr;398

Hartman et al. 2009). For M34, fitting the data after apply-399

ing the binarity filters described in Section 2.3 yielded an400

age of 230± 15 Myr. For M37, the same procedure yielded401

475±11 Myr. The latter estimate agrees with the isochronal402

age found by Hartman et al. (2008) without convective over-403

shoot (485±28 Myr), and is 2.3σ below their isochronal age404

that included convective overshoot (550±30 Myr).405

4.2. Precision of Gyrochronology406

Having demonstrated that our method can recover the ages407

of known cluster stars, here we examine its statistical limits408

for individual field stars. The bottom panel of Figure 3 shows409

the ±1σ uncertainties, normalized by the median of the gy-410

rochronal age posteriors, over a grid of rotation periods and411

temperatures. Broadly speaking, the regions in which gy-412

rochrones are packed together, such as the hottest stars and413

stalled ≈1 Gyr K-dwarfs, have the worst inferred precisions.414

The top panel of Figure 3 visualizes vertical slices of the415

bottom panel for a few canonical cases. For a Sun-like star416

(≈5800 K) in its early life, the rotation period is only infor-417

mative in that it provides an upper limit on the star’s age.418

As the star ages, the age posterior becomes two-sided, with419

1 TIC 44647574 in Psc-Eri; EPIC 212008710 in Praesepe; KIC 5026583 and
KIC 5024122 in NGC-6819; and EPIC 219774323 in Ruprecht-147

a best-case statistical precision of ±12% at 2 Gyr. For a420

low-mass K-dwarf, the evolution of the age posterior is more421

complicated. These stars only converge to the slow sequence422

by the age of Praesepe. Their spin-down is then observed to423

stall, which leads to highly asymmetric posteriors between424

ages of 0.5–1.3 Gyr. For instance, a 4000 K star on the slow-425

sequence at 200 Myr has a +1σ uncertainty of 88%, and a426

−1σ uncertainty of 13%. Nonetheless, statistical age preci-427

sions for such stars are predicted to improve after the era of428

stalled spin-down, reaching ±9% by 2 Gyr. The implication429

is that the rotation periods of such stars can be predictive of430

age, but only at certain times.431

5. DISCUSSION & CONCLUSIONS432

5.1. The Gyrochronal Precision Floor433

A key simplifying factor in our analysis is that we as-434

sumed the scatter of rotation periods around the slow se-435

quence, σ ≈ 0.51days, is fixed in time. Based on the data,436

σ appears to be constant between 120 Myr and 1 Gyr (Fig-437

ure 2, top panel). In α Per, the scatter is larger (0.85 days),438

likely because the stars are only just converging to the slow439

sequence. The scatter is also larger in the Ruprecht-147 data,440

but this is likely due to observational uncertainty in the period441

measurements. This empirical≈0.51-day scatter could come442

from a number of sources, including differential rotation on443

stellar surfaces (Epstein & Pinsonneault 2014), uncertainties444

in the effective temperature scale, or differing wind strengths445

between stars of the same mass and age.446

Regardless of the scatter’s origin, it sets the floor for447

gyrochronal precision, in tandem with the intrinsic spin-448

down rates. In line with previous results (Barnes 2007),449

gyrochronal ages for F-dwarfs are less precise than for G-450

dwarfs, because F-dwarfs spin down more slowly. However451

in detail, Figure 3 shows that such statements depend on both452

mass and age. More broadly, Figure 3 also implies that ac-453

counting for the evolving dispersion of the rotation period454

distributions is a required ingredient for producing accurate455

age uncertainties.456

5.2. Systematic Uncertainties457

The uncertainties described thus far have been statistical,458

rather than systematic. Key systematic uncertainties include459

the time-varying nature of the spin-down rate, the accuracy460

of the absolute age scale, and stellar binarity.461

Regarding the spin-down rate, our interpolation approach462

guarantees accuracy near any given reference cluster. How-463

ever, far from the reference clusters, the choice of interpo-464

lation method can affect the inferred ages. We estimated the465

associated systematic uncertainties by evaluating grids of Prot466

vs. Teff analogous to Figure 3, but assuming i) piecewise lin-467

ear interpolation, and ii) piecewise cubic hermite interpolat-468

ing polynomials calibrated only on the 0.08–2.6 Gyr data (see469

Appendix A). The difference in the medians of the age pos-470

teriors relative to our default interpolation method is an indi-471

cator of the systematic uncertainty. This procedure showed a472

<1% bias in the inferred ages for 5000–6200 K stars younger473
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Figure 3. Precision of gyrochronal ages from our method. Top: Age posteriors across rotation–temperature space. In each subplot, each
line represents a pair of Prot and Teff, and assumes a precision of 50 K in effective temperature, and 1% in rotation period. The solid lines come
from the best-fit model in Figure 2. The under-plotted dotted lines come from a more rigorous approach that samples over the population-level
hyperparameters discussed in Section 3.6. Bottom: +1σ (left) and −1σ uncertainty (right) of the age posterior, normalized by the median value.
For instance “±1σt/median(t) = 0.3” corresponds to 30% relative precision. Thick gray lines are at integer multiples of 500 Myr, and dotted
lines are spaced every 100 Myr.

than 1 Gyr, due to the dense sampling of the calibration clus-474

ters. For cooler stars however, a linear spin-down rate would475

yield differences of up to ±15% in the median age due to476

the rapid spin-down from 0.1–0.3 Gyr (see Figure 1). For477

older stars between 1 and 2.6 Gyr, the cubic interpolation478

yielded ±100 Myr differences, while the linear interpolation479

yielded −200 to +50 Myr differences, with the largest differ-480

ences again for stars cooler than 4500 K. The summary is481

that from 1–2.6 Gyr, there is a 6–12% systematic uncertainty,482

with the maximum uncertainty at 1.8 Gyr, half-way between483

the two reference clusters.484

Regarding the absolute age scale, Table 1 reports age pre-485

cisions for the calibration clusters of 3–20%, with the largest486

uncertainties for the 300±60 Myr NGC-3532 and Group-X.487

To assess how shifts in this scale might affect our gyrochronal488

ages, we again calculated grids of Prot vs. Teff, but in this489

case we shifted all the reference cluster ages by either +1σ490

or −1σ. The results showed what one would naively expect:491

if all the clusters are ±1σ older than their reference ages,492

then the changes in the inferred ages are nearly identical to493

however much freedom there is in the local age scale. For494

example, for a 5800 K star with a 5.1 day rotation period, our495
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method statistically yields t = 308+70
−81 Myr, roughly the age496

of NGC-3532. However, the age of that cluster is uncertain497

at the 20% level, and so the median age from our estimate498

for this worst-case scenario could be systematically shifted499

either up or down by ±20% to match the true age of the ref-500

erence cluster. From the uncertainties quoted in Table 1, and501

from comparable studies in the literature (e.g., Dahm 2015),502

the age scale itself seems to currently be defined at a ∼10%503

level of accuracy, at best.504

Finally, regarding binarity, the presence of even a wide505

binary during the pre-main-sequence can prompt fast disk506

clearing, which could alter a star’s rotation period by halting507

disk-locking (Meibom et al. 2007). This mechanism might508

explain the abundance of fast rotators in ≈120 Myr open509

clusters (Bouma et al. 2021). A separate concern with bina-510

ries is photometric blending of the rotation signal. Because511

of these issues, our framework is only strictly applicable to512

stars that are apparently single. Section 2.3 summarizes some513

of the information that can be used to determine whether a514

given field star meets this designation. Appendix B discusses515

the potential impact of ignoring binarity entirely.516

5.3. Future Directions517

The need for intermediate-age calibrators —The region of Fig-518

ure 1 with the largest gap, near 1.8 Gyr, has the largest sys-519

tematic uncertainties in our model. These uncertainties could520

be addressed by measuring rotation periods in a cluster at521

this age. Considering clusters from Cantat-Gaudin et al.522

(2020) older than 1 Gyr, within 1 kpc, and with more than 100523

members yields eight objects. Sorted near to far, they are:524

Ruprecht-147, NGC-752, IC-4756, NGC-6991, NGC-2682,525

NGC-7762, NGC-2423, and IC-4561. The closest two have526

been studied by Curtis et al. (2020) and Agüeros et al. (2018),527

though rotation periods in NGC-752 (1.34± 0.06 Gyr, d ∼528

440 pc) could be worth revisiting using data from the Tran-529

siting Exoplanet Survey Satellite and the Zwicky Transient530

Facility. IC-4756 and NGC-6991 could similarly merit fur-531

ther study, though it would be wise to confirm their ages be-532

fore delving in a rotation period analysis.533

Going older —M67 (4 Gyr) will likely be the next rung in the534

gyrochronology ladder: the analyses by Barnes et al. (2016)535

and Dungee et al. (2022) have nearly completed its rotation–536

color sequence. As described in Appendix A, we used their537

data on M67 to calibrate the rate of spin-down between 1538

and 2.6 Gyr. This choice is connected to a generic issue with539

interpolation-based methods: the systematic uncertainty in540

the model increases near the boundaries of the interpolation541

domain. By this logic, incorporating the 4 Gyr data in the542

most reliable way would require an even older population of543

stars. Clusters such as NGC 6791 (8 Gyr; Chaboyer et al.544

1999), or else a precise set of asteroseismic calibrators (e.g.,545

van Saders et al. 2016) might be the most plausible paths546

toward this goal, though the complicating effects of stellar547

evolution bear consideration.548

Precision age-dating of field stars —The best way to demon-549

strate the reliability of a star’s age is to measure it using550

independent techniques. One framework that we expect551

to complement our own is the BAFFLES code (Stanford-552

Moore et al. 2020), which returns age posterior probabilities553

based on a star’s surface lithium content. Other age-dating554

tools, including activity (Ca HK, Ca IRT, x-ray, UV excess),555

isochrones, and asteroseismology, can similarly be combined556

with our gyrochronal posteriors to verify the accuracy of our557

rotation-based ages, and to improve on their precision.558

Angus et al. (2019) presented an important step in559

this vein, through a method that simultaneously fitted an560

isochronal and gyrochronal model to determine a star’s age.561

Their statistical framework could certainly encompass the562

model developed in this manuscript. The main advantages563

of our particular gyrochronology model however are i) im-564

proved accuracy for stalling K-dwarfs, ii) improved accuracy565

in treating the growth of the slow sequence and decay of the566

fast sequence over the first gigayear, and iii) incorporation of567

the astrophysical width of the slow sequence for FGK stars.568

The main disadvantage is that our model is not applicable569

beyond 2.6 Gyr, though we caution that this is because the570

calibration data are more sparse in this regime, and so the571

ages have larger systematic uncertainties.572

Physics-based models —A separate issue with our model is573

that it is empirical, and so it does not yield physical under-574

standing. Physics-based gyrochronology models have pro-575

vided crucial insight into what gives the data in Figure 1 their576

structure. The relevant physics likely includes decoupling be-577

tween the radiative core and convective envelope (Gallet &578

Bouvier 2013), angular momentum transport to recouple the579

core and envelope (Gallet & Bouvier 2015; Spada & Lan-580

zafame 2020), and spin-down rates that vary depending on581

whether the magnetic dynamo is saturated (e.g., Sills et al.582

2000; Matt et al. 2015). At older ages, additional physics583

may well be needed to explain the lethargic spin-down of584

stars with Rossby numbers comparable to the Sun (Brown585

2014; van Saders et al. 2016; David et al. 2022). A separate586

issue that also merits attention is the exact role of binarity on587

stellar rotation. Our filtering process (Section 2.3) removed588

potential binaries based on a gamut of tracers, because ob-589

servations have shown that rapid rotators are often binaries590

(Meibom et al. 2007; Stauffer et al. 2016; Gillen et al. 2020).591

The exact properties of these binaries, for instance their sep-592

arations and masses, would help in clarifying the physical593

origin of this correlation. The issue of whether binarity leads594

to early disk dispersal seems likely to be related, and also595

deserves attention (Cieza et al. 2009).596
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APPENDIX697

A. GYROCHRONE INTERPOLATION & LITERATURE COMPARISON698

How does the slow sequence evolve between each reference cluster? In other words, what is the functional form of µslow(t,Teff),699

the rotation period of a star evolving exactly along the slow sequence? Figure 4 summarizes a few possible answers, evaluated at700

5800 K, 5000 K, and 4200 K. Data from Barnes et al. (2016) and Dungee et al. (2022) have been included as the 4 Gyr M67 data701

points, to assess how well the interpolation methods succeed at extrapolating beyond 2.6 Gyr.702

The simplest plausible model would be if the slow sequence’s evolution followed a power-law, with a flexible color or tem-703

perature calibration similar to that suggested by many authors (e.g., Skumanich 1972; Noyes et al. 1984; Barnes 2003). In this704

approach, for every temperature, we would set Prot ∝ tn, where canonically n = 1/2. We would then scale based on some fiducial705

rotation period, say at 120 Myr. Figure 4 shows how well this type of scaling works, letting n float in order to match the data as706

well as possible. For Sun-like stars (≈5800K), this type of scaling works surprisingly well, yielding agreement with the cluster707

data at the <15% level for n = 0.47 out to 4 Gyr. The agreement is significantly worse for lower mass stars, due to their stalled708

spin-down at intermediate ages.709

An alternative approach would be to directly interpolate between the cluster sequences, ignoring our expectation for any kind of710

power-law spin-down. The resulting linear and quadratic interpolation cases are shown as the dot and dot-dash lines in Figure 4.711

While these approaches tautologically fit the data, they suffer from sharp transitions in the spin-down rate at every reference712

cluster. Quadratic interpolation is also not guaranteed to be monotonic, which is probably a desirable property for a stellar spin-713

down. A final concern is that interpolating in this way is not guaranteed to be predictive; leaving the M67 data out, extrapolating714

based on the 1–2.6 Gyr data will generally over or under-estimate the rotation periods in the 2.6–4 Gyr interval.715

An approach closer to interpolation that still incorporates a form of power-law scaling is as follows. For a point (Ti,Pi)
intermediate between the loci of two clusters with ages t0 and t1 and rotation periods P0 and P1 at the same temperature Ti, set

Pi = P0

(
ti
t0

)n

, for n =
log
(
P1/P0

)
log
(
t1/t0

) . (A1)

In other words, given the full set of reference loci {µ0,µ1, . . . ,µk}, their ratios {µ1/µ0, . . . ,µk/µk−1} can be used to define power-716

law scalings that are accurate at a piecewise level. While this tautologically fits the data, there is a concern that for cool stars older717

than 1 Gyr, it may over-estimate the rotation periods. This concern is primarily based on the sharp transition visible in Figure 4718

in the spin-down rate at 1 Gyr for the 4200 K case.719

A final approach is based on PCHIP interpolation (Piecewise Cubic Hermite Interpolating Polynomials; Fritsch & Butland720

1984). This approach is monotonic, and continuous in the first derivatives at each reference cluster. While it is interpolation-721

based, and therefore not predictive outside of its training bounds, we can include the M67 data in order to define the most accurate722

possible slow sequence evolution over the 1–2.6 Gyr interval. The results are shown with the black line in Figure 4 in the method723

labeled “pchip_m67,” which we adopt as our default. This approach leaves the slope of Prot vs. t even less constrained in the724

2.6–4 Gyr interval, which is why we do not advocate using our model for stars older than 2.6 Gyr.725

Finally, the models from Mamajek & Hillenbrand (2008) (MH08), Angus et al. (2019) (A19), and Spada & Lanzafame (2020)726

(SL20) are also shown in Figure 4 for comparison. The MH08 model is defined over 0.5 < (B −V )0 < 0.9, or roughly 5050–727

6250 K. The Teff = 5000K case is therefore a mild over-extrapolation, but we nonetheless show the result for illustrative purposes.728

Of the three cases, the Spada & Lanzafame (2020) model generally provides the best match to the data.729

B. WHAT IF WE IGNORED BINARITY?730

In this work we argued that omitting binaries from gyrochronology analyses is important due to the observational and astro-731

physical biases that they can otherwise induce on rotation periods. In Section 2.3, we described the set of quality filters that732

we used to expunge binaries from our calibration data, to guarantee that we were considering only apparently single stars with733

reliable rotation period measurements. For generic field stars, not all of these conditions are necessarily applicable. For instance,734

outliers in color–absolute magnitude diagrams might be challenging to identify due to the lack of an immediately obvious ref-735

erence sequence (although the locus of the main-sequence is itself well-known, and Gaia for instance can now be used to query736

local spatial volumes around arbitrary field stars to construct well-defined reference samples).737

In general, we strongly recommend applying our method only to stars that are thought to be single and on the main sequence.738

For instance, spectroscopic surface gravity estimates should be used, if available, to expunge evolved stars since they are not in739

our calibration data. Nonetheless, it is interesting to consider how well our method translates for samples that are messier, and740

that have binarity rates in line with field populations. Figure 5 shows the result of dropping all of the quality cuts described in741

Section 2.3, using the data included behind Figure 1.742



12 BOUMA, PALUMBO, HILLENBRAND

5

10

15

20

25

P r
ot

 [d
ay

s]
5800 K

skumanich_fix_n_0.47
skumanich_vary_n
1d_linear
1d_quadratic
1d_pchip
pchip_m67
MH08
A19
SL20

100 1000
Age [Myr]

30

20

10

0

10

20

30

Re
sid

ua
l [

%
]

10

20

30

40

P r
ot

 [d
ay

s]

5000 K
skumanich_fix_n_0.33
skumanich_vary_n
1d_linear
1d_quadratic
1d_pchip
pchip_m67
MH08
A19
SL20

100 1000
Age [Myr]

30

20

10

0

10

20

30

Re
sid

ua
l [

%
]

10

20

30

40

50

P r
ot

 [d
ay

s]

4200 K
skumanich_fix_n_0.25
skumanich_vary_n
1d_linear
1d_quadratic
1d_pchip
pchip_m67
A19
SL20

100 1000
Age [Myr]

30

20

10

0

10

20

30

Re
sid

ua
l [

%
]

5

10

15

20

25

P r
ot

 [d
ay

s]

5800 K
skumanich_fix_n_0.47
skumanich_vary_n
1d_linear
1d_quadratic
1d_pchip
pchip_m67
MH08
A19
SL20

0 2000 4000
Age [Myr]

30

20

10

0

10

20

30

Re
sid

ua
l [

%
]

10

20

30

40

P r
ot

 [d
ay

s]

5000 K
skumanich_fix_n_0.33
skumanich_vary_n
1d_linear
1d_quadratic
1d_pchip
pchip_m67
MH08
A19
SL20

0 2000 4000
Age [Myr]

30

20

10

0

10

20

30

Re
sid

ua
l [

%
]

10

20

30

40

50

P r
ot

 [d
ay

s]

4200 K
skumanich_fix_n_0.25
skumanich_vary_n
1d_linear
1d_quadratic
1d_pchip
pchip_m67
A19
SL20

0 2000 4000
Age [Myr]

30

20

10

0

10

20

30

Re
sid

ua
l [

%
]

Figure 4. Different approaches for interpolating between reference clusters. Prot denotes the rotation period of the star if it were evolving
exactly along the slow sequence. The top two and bottom two rows show identical data, but are scaled logarithmically and linearly in time. The
“residual” is defined versus the pchip_m67 interpolation method, calculated for each model i as (Prot,i −Prot,pchip_m67)/Prot,i. The “+” data points
are evaluated from polynomial fits to the data in Figure 1. The fixed power laws (“skumanich_fix_n_0.XX”) are extrapolated based on
the rotation period at 120 Myr. MH08: Mamajek & Hillenbrand (2008). A19: Angus et al. (2019). SL20: Spada & Lanzafame (2020).
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Figure 5. What if we loosened the quality cuts? This plot is the same as Figure 2, but systems that are known or suspected to be visual,
photometric, astrometric, and spectroscopic binaries are now displayed along with the single stars. The model is the same as in Figure 2, as is
the panel ordering.

The first noticeable effect is that without any quality cuts, there are more stars. The star count in α Per jumps from 65 to743

128; in the 120 Myr clusters from 196 to 364, in the 300 Myr clusters from 133 to 301; and in Praesepe from 100 to 250. In744

addition, without quality cuts, the width of the slow sequence increases. The mean residual width for the t ≥ 120 Myr stars745

within 2 days of the slow sequence is 0.72 days, a 40% increase from σ = 0.51 days observed in the cleaned sample. This scatter746

term is proportional to the statistical age uncertainty at late times, in the regime of very precise rotation period and temperature747

measurements (Barnes 2007). This suggests that if one wished to apply our gyrochronology model to a population with a mixture748

of single and binary stars, the model would need to be refit to account for the wider intrinsic scatter in such a population.749

Finally, we can ask to what degree the ratio between fast and slow rotators changes when we omit all quality cuts. The results750

are shown in the bottom row of Figure 5, and compared against the original best-fit model (trained on the cleaned data) from751

Figure 2. While the visual agreement remains good at t ≥ 120Myr, the hot stars in the raw α Per sample have a larger fast fraction752

than in the cleaned sample, and so the model provides a worse match to those stars. A second qualitatively important difference is753

present in Praesepe: the raw data show around a dozen rapid outliers, none of which are present in the cleaned dataset (Figure 2).754

If any of these stars were single and rapidly rotating, we might construe them as motivation to lengthen our model’s timescale755

for the decay of the fast sequence. However, since they are most likely binaries, and the Hyades similarly shows no evidence for756

rapidly rotating single stars hotter than 3800 K (Douglas et al. 2019). The NGC-6811 data at 1 Gyr similarly have no reported757

rapid rotators (Curtis et al. 2019a). We therefore simply note that these outlying stars do exist at 0.7 Gyr, and that practitioners758

aiming to perform gyrochrone analyses on populations of stars that include binaries should consider them.759
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